Locally compact groups, residual Lie groups, and varieties generated by Lie groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Groups and p-Compact Groups

A p-compact group is the homotopical ghost of a compact Lie group; it is the residue that remains after the geometry and algebra have been stripped away. This paper sketches the theory of p-compact groups, with the intention of illustrating the fact that many classical structural properties of compact Lie groups depend only on homotopy theoretic considerations. 1 From compact Lie groups to p-co...

متن کامل

Compact Lie Groups

The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem.

متن کامل

Lie Algebras, Algebraic Groups, and Lie Groups

These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...

متن کامل

Lie Algebras and Lie Brackets of Lie Groups–matrix Groups

The goal of this paper is to study Lie groups, specifically matrix groups. We will begin by introducing two examples: GLn(R) and SLn(R). Then in each section we will prove basic results about our two examples and then generalize these results to general matrix groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1996

ISSN: 0166-8641

DOI: 10.1016/0166-8641(95)00068-2